HIGHER UNIVERSITY TECHNICIAN IN AQUACULTURE PROJECTS SPECIALIST

COURSE SYLLABUS WITH BREAKDOWN OF THEMATIC UNITS

1. Course	Biostatistics		
2. Competencies	Direct the production of auxiliary organism cultured,		
	based on the conditions evaluation of the aquaculture		
	systems to contribute to the profitability of the		
	organization.		
3. Four Month Period	Second		
4. Practical Hours	60		
5. Theoretical Hours	30		
6. Total Hours	90		
7. Week Total Hours	6		
Four Month Period			
8. Course Objective	The student will determine the behavior of variables in		
	aquaculture populations, using statistical tools for		
	decision making.		

Theme Units	Hours			
		Practical	Theoretical	Total
I. Introduction		8	4	12
II. Probability Theory		9	6	15
III. Probabilistic Models		7	4	11
IV. Confidence Intervals		8	4	12
V. Hypothesis Testing		14	6	20
VI. Linear Regression and Correlation		14	6	20
	Total	60	30	90

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

THEMATIC UNITS

1. Theme Unit	I. Introduction
2. Practical Hours	8
3. Theoretical Hours	4
4. Total Hours	12
5. Objective	The student will calculate the measures of central tendency and dispersion to describe the behavior of a statistical population.

Themes	Learning to know	Learning to do	Learning to be
Definitions and types of statistics	To explain the fundamental concepts of statistics and their classification.		Efficient Observer Methodical Analytical
Descriptive statistics: frequency charts and graphs.	To explain the concepts of frequency tables, their characteristics and application	To build frequency tables and their graphs from a dataset.	Efficient Observer Methodical Analytical
Concept of simple, population and universe.	To describe the concepts of simple, population and universe.		Efficient Observer Methodical Analytical
Central tendency measures.	To explain the methodology for calculating the measures of central tendency and their interpretation: arithmetic mean, pruned average, geometric mean, harmonic mean, fashion, median, quartiles, deciles,	To calculate the measures of central tendency to graph the results of the calculation of the measures of central tendency. To interpret the results.	Efficient Observer Methodical Analytical

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST. **REVISED BY:** ACADEMIC AND LIAISON COMMISION OF THE AREA

Themes	Learning to know	Learning to do	Learning to be
Scatter	To explain the	To calculate the	Efficient
measures.	methodology for	dispersion measures.	Observer
	calculating the	To graph the results of	Methodical
	dispersion measures:	the calculation of the	Analytical
	range, interquartile	dispersion measures.	
	range, mean deviation,	To interpret the results.	
	deviation and coefficient		
	of variation.		

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

Evaluation Process				
Learning outcomes	Learning sequence	Instruments and type of Reagents		
The learner will solve a number of cases in the aquaculture area, that	1. To identify the basic concepts of statistics.	Study Cases. Checklist.		
includes:	2. To understand the procedure for calculating central tendency			
central tendency	and dispersion measures.			
measures.	3. To understand the procedure of plotting of the measures of			
- Calculation of the	central tendency and dispersion.			
Granbs	4. To interpret the results.			
Deculto				
interpretation.				

Teaching Learning Process			
Methods and teaching techniques	Media and didactic materials		
Research Practical Exercises Cases study	Computers with Word processor and spreadsheet software installed. Projector Screen Board Markers Calculator		

Learning Space				
Classroom Laboratory / Workshop Company				
X				

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

THEMATIC UNITS

1. Theme Unit	II. Probability Theory
2. Practical Hours	9
3. Theoretical Hours	6
4. Total Hours	15
5. Objective	The student will understand the key concepts of probability and
-	their methodologies for calculating significant sample sizes.

Themes	Learning to know	Learning to do	Learning to be
Counting techniques: permutations and combinations	To describe the concepts of conditional probability event, independent event and dependent event, permutations and combinations. To explain the methods of calculating the possible combination and permutations of	To calculate permutations and occurrence combinations of possible aquaculture- related events.	Efficient Observer Methodical Analytical
Exhibition space and events.	To recognize the basic operations of sets: union, intersection, complement and difference. To describe the concepts and scope of the sample space and events.	To calculate the basic operations of sets. To determine a sample area. To represent sets graphically.	Efficient Observer Methodical Analytical
Sum of probabilities	To explain the probability sum theorem by using the Venn-Euler diagrams.	To calculate the sum of probabilities.	Efficient Observer Methodical Analytical

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

Themes	Learning to know	Learning to do	Learning to be
Conditional Probability	To explain the product theorem in probability by using the Venn-Euler diagrams.	To calculate the probabilities product.	Efficient Observer Methodical Analytical
Bayes Theorem	To define Bayes theorem, its application and importance in the probabilities.	To calculate the probability of occurrence of events between separate sets.	Efficient Observer Methodical Analytical

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

Evaluation process				
Learning outcomes	Learning sequence	Instruments and type of reagents		
Learning outcomes From a real case related to aquaculture, the learner will develop a report that includes: - Description of the sample space. - Venn-Euler Diagrams. - Events description. - Probability calculation.	 Learning sequence 1. To understand the basic concepts of probability. 2. To understand the methods of calculation, permutations and combinations. 3. To recognize basic sets operations. 4. To understand the procedure of calculating the sum and probabilities product. 5. To understand the procedure for calculating the occurrence probability of events between independent sets. 	Instruments and type of reagents Cases study. Checklist.		

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE

Teaching Learning Process		
Methods and teaching techniques	Media and didactic materials	
Methods and teaching techniques Research Exercise Resolution. Cases Study.	Media and didactic materials Computers with Word processor and spreadsheet software installed. Projector Screen Board Markers	

Learning Space		
Classroom Laboratory / Workshop Company		
X		

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

THEMATIC UNITS

1. Theme Unit	III. Probabilistic Models
2. Practical Hours	7
3. Theoretical Hours	4
4. Total Hours	11
5. Objective	The student will explain the behavior of a set of data, using
	probabilistic models, to solve problems related to aquaculture.

Themes	Learning to know	Learning to do	Learning to be
Binomial	To explain the binominal distribution model and its characteristics.	To solve aquaculture problems related to the binominal distribution model.	Efficient Observer Methodical Analytical
Hypergeometric	To explain the hypergeometric distribution model and its characteristics.	To solve aquaculture problems related to the hypergeometric model.	Efficient Observer Methodical Analytical
Poisson	To explain the Poisson distribution model and its characteristics.	To solve problems related to the Poisson distribution model.	Efficient Observer Methodical Analytical
Normal and central boundary theorem	To explain the normal distribution model and the central boundary theorem and its characteristics.	To solve aquaculture problems related to normal distribution model.	Efficient Observer Methodical Analytical

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

Themes	Learning to know	Learning to do	Learning to be
Log-Normal	To explain the Lognormal distribution model and its characteristics.	To solve aquaculture problems related to the Lognormal distribution model.	Efficient Observer Methodical Analytical
Chi-Squared	To explain the Chi- squared model and its characteristics.	To solve aquaculture problems related to the binominal distribution model.	Efficient Observer Methodical Analytical
Student's-T	To explain the Student's T model and its characteristics.	To solve aquaculture problems related to the Student's T distribution model.	Efficient Observer Methodical Analytical
Fisher-F	To explain Fisher's F distribution model.	To solve aquaculture problems related to Fisher's distribution model.	Efficient Observer Methodical Analytical

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

Evaluation process			
Learning outcomes	Learning sequence	Instruments and type of reagents	
From a number of aquaculture-related cases, the learner will prepare a report that contains: 2 - Justification. - Development of probabilistic models. - Analysis of the results. 3 - Conclusions 3	 To identify probabilistic models and heir characteristics. To understand the procedure or calculating probabilistic models. To interpret the results. 	Cases Study Checklist.	

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

Teaching Learning Process		
Methods and teaching techniques	Media and didactic materials	
Methods and teaching techniques Practical Exercises Case Analysis Research Tasks	Media and didactic materials Computers with spreadsheet software installed. Projector Screen Board Markers	

Learning Space		
Classroom Laboratory / Workshop Company		
Х		

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

THEMATIC UNITS

1. Theme Unit	IV. Confidence Intervals
2. Practical Hours	8
3. Theoretical Hours	4
4. Total Hours	12
5. Objective	The student will calculate the confidence intervals to define the limits of the values in the measures of central tendency or of dispersion.

Themes	Learning to know	Learning to do	Learning to be
Confidence intervals concept.	To define the concept of confidence intervals, their application and importance.		Efficient Observer Methodical Analytical
Calculating confidence intervals.	To explain the procedure of calculating confidence intervals in the central tendency and dispersion measures.	To solve calculation problems of confidence intervals in the mean and variance.	Efficient Observer Methodical Analytical

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

Evaluation process			
Learning outcomes	Learning sequence	Instruments and type of reagents	
From a real case in the aquaculture area, the pupil will calculate the confidence intervals and submit a report that includes: - Calculation Memory - Interpretation	 To understand concept of confidence intervals and their application. To understand confidence intervals calculation procedure. To interpret the calculation results of the confidence intervals. 	Practical Exercise. Checklist.	

Teaching Learning Process		
Methods and teaching techniques	Media and didactic materials	
Methods and teaching techniques Research Tasks Practical Exercises Case Analysis.	Media and didactic materials Computers with spreadsheet software installed. Projector Screen Board Markers	

Learning Space		
Classroom Laboratory / Workshop Company		Company
X		

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

THEMATIC UNITS

1. Theme Unit	V. Hypothesis Testing
2. Practical Hours	14
3. Theoretical Hours	6
4. Total Hours	20
5. Objective	The student will predict the behavior of a set of data under
	determined conditions, to establish actions.

Themes	Learning to know	Learning to do	Learning to be
Hypothesis Testing	To define the concepts of hypothesis tests, types of errors, level of significance and their characteristics.		Efficient Observer Methodical Analytical
Parametric hypothesis testing.	To explain the methodology of calculating parametric hypothesis tests: types of error and level of significance.	To solve problems by calculating parametric hypothesis tests.	Efficient Observer Methodical Analytical

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

Evaluation Process			
Learning outcomes	Learning sequence	Instruments and type of reagents	
Learning outcomes From a case of aquaculture area, the student will integrate a report that contains: - Approach of the problem. - Calculation of hypothesis testing. - Interpretation.	Learning sequence 1. To understand the concepts of hypothesis testing, error types and significance level. 2. To understand procedure for calculating hypothesis tests. 3. To interpret the results of the calculation of hypothesis tests.	Instruments and type of reagents Cases Study. Checklist.	

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

Teaching Learning Process		
Teaching Methods and Techniques	Media and Teaching Materials	
Teaching Methods and Techniques Research Tasks Practical Exercises Case Analysis.	Media and Teaching Materials Computers with spreadsheet software installed. Projector Screen Board Markers	

Learning Space		
Classroom Laboratory / Workshop Company		Company
X		

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

THEMATIC UNITS

1. Theme Unit	VI. Linear Regression and Correlation
2. Practical Hours	14
3. Theoretical Hours	6
4. Total Hours	20
5. Objective	The student will determine the interaction between two variables to
	propose actions.

Themes	Learning to know	Learning to do	Learning to be
Simple linear regression	To explain the simple linear regression model with the hypothesis testing methods, confidence intervals, variance analysis.	To solve simple linear regression problems by applying the minimum square adjustment method.	Efficient Observer Methodical Analytical
	To explain the methodology of the calculation of simple linear regression by the method of least squares.		
Correlation	To describe the concepts of simple linear correlation coefficient, comparison of correlation coefficients, correlation and their relation by ranges. To relate the correlation with the hypothesis test explaining the methodology of calculating the correlation coefficient.	To solve problems of aquaculture by means of the statistical tests of simple linear correlation coefficient.	Efficient Observer Methodical Analytical

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

Evaluation Process			
Learning outcomes	Learning sequence	Instruments and type of reagents	
From a case of the aquaculture area, the student will submit a report that includes:	To understand the concept of simple linear regression and its relation with the methods of testing hypothesis, intervals of confidence, analysis of variance.	Cases Study. Checklist.	
 Linear regression analysis and adjustment by the method of least squares. 	To understand the linear regression methodology and its adjustment by the method		
- Correlation coefficient.	of least squares.		
- Interpretation	To understand the methodology of calculating the correlation coefficient and its application.		

Learning Space		
Classroom Laboratory / Workshop Company		
X		

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

APPROVED BY: C. G. U. T.

REVISED BY: ACADEMIC AND LIAISON COMMISION OF THE AREA

CAPACITIES DERIVED FROM THE PROFESSIONAL COMPETENCES TO WHICH THE COURSE CONTRIBUTES

Capacity	Performance Criteria
To diagnose the conditions of aquaculture systems. Through physicochemical and biological analysis techniques and historical records, to guarantee the health, safety and profitability of production.	 Prepare a report on the conditions under which an aquaculture system is found, containing: Obtaining and processing the samples and their justification. Analysis and interpretation of information (logs, histories, analysis results, laboratory reports). Conclusions and recommendations.
To verify the fattening process of aquaculture organisms through biometric, health, safety and food techniques, based on good practices to contribute to the performance and quality of aquaculture production.	 The student prepares logbooks of the fattening process of aquaculture organisms, based on good practices, which should include: Morphometric records Records of physicochemical parameters of water quality. Observations of the signs of internal or external injuries, diseases and behavior alterations Record of feeding (percentages of protein, food ration, feed conversion and pellet size). Mortality records Preventive, corrective treatments and adjustments.
Supervise the technical conditions of the sustainable aquaculture project according to the technical criteria and the applicable regulations, to comply with the requirements of the implementation.	 Prepare a report on the process of harvesting aquaculture products, based on good practices, specifying: Harvesting techniques according to the species and stage of development Indicators of compliance with the goals or objectives of the organization Analysis and interpretation of indicators Conclusions and recommendations

WRITTEN BY: COMMITTEE OF DIRECTORS OF TSU CAREER IN AQUACULTURE PROJECTS SPECIALIST.

Capacity	Performance Criteria		
State the potential market of an aquaculture product through an analysis of the situation of the markets, to identify marketing opportunities.	 Prepare a report about the market analysis of aquaculture products that includes: Characteristic of the markets of the main products and supplies. Channels of distribution and sale. Conditions and mechanisms for supplying raw materials and supplies. Plan and marketing strategy: A) Price structure of products and by-products, as well as sales policies. B) Competitiveness analysis. C) Income projection Letters of Intent and/or contracts for the purchase and sale of raw materials and products. 		

BIBLIOGRAPHY

Author	Year	Title	City	Country	Publisher
Sokal R. R. et al.	(1995)	Biometry	New York	USA	W. H. Freeman
Blaesid, P. et al.	(2003)	<i>Statistics with application to Biology and Geology</i>		USA	Chapman and Hall
Hines, William W.	(2005)	Probabilidad y Estadística para Ingeniería	Mexico, D. F.	México	CECSA
Zar, J. H.	(2006)	Bioestatistical Analysis	Upper Sadle River	USA	Prentice Hall
Wayne, W. Daniel	(2008)	Bioestadística.	México, D. F.	México	Limusa
Blair, Cliford	(2008)	Bioestadística	Mexico, D. F.	México	Person Prentice Hall